New Limits from Old

Homework Assignment

Use correct limit notation and words, where appropriate, to express your answers to the following problems.

1. Let f and g be the functions whose graphs are shown below. Use the graphs to evaluate the following limits. If a limit doesn't exist, explain why.

a. $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$
c. $\lim _{x \rightarrow 1} \frac{f(x)}{g(x)}$
b. $\lim _{x \rightarrow-3^{+}} \frac{f(x)}{g(x)}$
2. Let f and g be the functions whose graphs are shown below. Use the graphs to evaluate the following limits. If a limit doesn't exist, explain why.

a. $\quad \lim _{x \rightarrow 0}(f(x)+g(x))$
b. $\lim _{x \rightarrow 2}(f(x)+g(x))$
c. $\quad \lim _{x \rightarrow 1}(f(x) g(x))$
d. $\lim _{x \rightarrow 2}(f(x) g(x))$
e. $\lim _{x \rightarrow-2} \frac{f(x)}{g(x)}$
f. $\lim _{x \rightarrow 0} \frac{g(x)}{f(x)}$
3. Use the graph of f to determine whether $\lim _{x \rightarrow 0} \frac{f(x)-2}{x}$ exists. If it does, compute it. If it doesn't, explain how you know. (Hint: it will help you to think geometrically about what this limit represents.)

4. Use the graph of g to determine whether $\lim _{h \rightarrow 0} \frac{g(2+h)}{h}$ exists. If it does, compute it. If it doesn't, explain how you know.

5. Graph the function $f(x)=|x|$ on the interval $[-1,1]$. Think carefully as you answer the following questions. (Hint: make of use the graph in setting up the difference quotients in the first two parts of the problem. It will simplify the problem!)
a. First set up, then evaluate $\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}$.
b. First set up, then evaluate $\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}$.
c. Use this information to show that the function f is not differentiable at $x=0$.
d. Think about zooming in on the graph near zero. What do you see? Is the function locally linear at $x=0$?

Note: You should see a connection between parts c. and d. of this problem. Do you? If not, you should ask about this!
6. Let $f(x)=\left\{\begin{array}{cc}a x+1 & \text { if } x<2 \\ x^{2} & \text { if } x \geq 2\end{array}\right.$.
a. Find the value of a for which $\lim _{x \rightarrow 2} f(x)$ exists.
b. If a has the value found in part a, does $f^{\prime}(2)$ exist? Justify your answer.

